
Presentation to:
HPC User Forum at HLRS:

Trends and New Directions in HPC

Thomas Sterling, Ph.D
Arnaud and Edwards Professor of Computer Sciencep

Louisiana State University

Visiting Associate, California Institute of Technology
S ODistinguished Visiting Scientist, Oak Ridge National Laboratory

CSRI Fellow, Sandia National Laboratory

October 5 2009

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 1

October 5, 2009

Gustav

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 2

Simulating Hurricane Storm Surge

from Gabrielle Allen et al, LSU

Different Models – Time Critical Solutions

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 4

Key Points
• HPC in Phase Change

– Technology pushes through punctuated equilibriumgy p g p q
• Role of new model of computation

– Paradigm shift, adjusts to new set of needs
• ParalleX as an example

– Includes some (not all) of the fundamental features needed
• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads
– Elimination of global barriers through lightweight

synchronization

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 5

HPC Phases
I. Sequential instruction execution
II. Sequential instruction issue

o pipeline execution,
o reservation stations,
o ILPo ILP

III. Vector
o pipelined arithmetic, registers, memory access
o Cray

IV. SIMD
o MasPar CM-2o MasPar, CM 2

V. CSP
o MPP, clusters
o MPI

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 6

HPC in Phase Change
• Technology advances demand new system structures and

operational modalities for optimality
• SLOW – sources of performance degradation

– Starvation: insufficient parallelism
– Latency: of access and action to remote resourcesLatency: of access and action to remote resources
– Overhead: of critical work for resource management
– Waiting: for contention of access to shared resources

P di hift i i i ti• Paradigm shift in organizing computing
– Architecture
– Programming models and compilation techniquesg g p q
– OS and runtime

• The 6th Phase
S l bilit ffi i bilit li bilit– Scalability, efficiency, power, programmability, reliability

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 7

Data Center Total Concurrency

1.E+09

1.E+10

Billion-way concurrency

1.E+07

1.E+08

cu
rr

ec
nc

y

1.E+05

1.E+06

To
ta

l C
on

c

Million-way concurrency

1.E+03

1.E+04

Thousand-way concurrency
1.E 03

1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

Top 10 Top System Top 1 Trend
Historical Exa Strawman Evolutionary Light Nodey g
Evolutionary Heavy Node

Courtesy of Peter Kogge, UND

Data Center Performance Projections

1 E+09

1.E+10

Exascale

1.E+08

1.E+09 Exascale

Lightweight

1 E+06

1.E+07

G
Fl

op
s

Heavyweight

g g

1.E+05

1.E+06

1.E+04

1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

But not at 20 MW!
Courtesy of Peter Kogge, UND

Strategic Requirements
• Scalability
• EfficiencyEfficiency
• Storage capacity
• Power consumptionPower consumption
• Reliability, and
• Programmability• Programmability

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 10

Exascale Design Point
• Feature size of 22 to 11 nanometers,

CMOS in 2018
• Total average of 25 Pico-joules per

• Explicitly managed high speed buffer
caches; part of deep memory hierarchy

• Optical communications for distances > g j p
floating point operation

• Approximately 10 billion-way parallelism
• 100 million to 1 billion cores

Clock rates of 1 to 2 GH (this is

p
10 centimeters, possibly inter-socket

• Optical bandwidth of 1 Terabit per second
• System-wide latencies on the order of

10’s of thousands of cycles• Clock rates of 1 to 2 GHz (this is
approximate with a possible error of a
factor of 2)

• Multi-threaded fine grain parallelism of 10

10 s of thousands of cycles
• Active power management to eliminate

wasted energy by unused cores
• Fault tolerance by means of graceful

to 100 way concurrency per core
• 100’s of cores per die (varies dramatically

depending on core type, and other
factors)

degradation and dynamically
reconfigurable structures

• Hardware rapid thread context switching
• Hardware message to thread conversion

• Global address space without cache
coherence; extensions to PGAS

• 128 Petabytes capacity mix of DRAM and
nonvolatile memory

Hardware message to thread conversion
for message-driven computation

• Hardware lightweight synchronization
• 3-D packaging of dies for stacks of 4 to 10

dies eachnonvolatile memory dies each

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 11

Key Points
• HPC in Phase Change

– Technology pushes through punctuated equilibriumgy p g p q
• Role of new model of computation

– Paradigm shift, adjusts to new set of needs
• ParalleX as an example

– Includes some (not all) of the fundamental features needed
• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads
– Elimination of global barriers through lightweight

synchronization

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 12

Purpose of Models of Computation
• Not just an academic intellectual exercise
• Critical tool for realizing effective Exascale applications
• To address challenges imposed by technology changes
• To exploit opportunities delivered by technology advances

th• Reflects change to (VIth) HPC phase
• Facilitates co-design of separate but interoperable system

layerslayers
• Supports new methods
• Frees previous constraints, “deadly embrace” of p y

conventional practices

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 13

Attributes of an Execution Model (1)
• A single representation of a system class

– All such systems share the same specifications
– All layers of the system are implicitly represented– All layers of the system are implicitly represented

• Architecture, OS, runtime, compiler, programming models
• Not necessarily explicitly exposed
• Effects of interoperability as an emergent propertyp y g p p y

– Systems may be distinguished by implementation
• Strategies

– Approach to solving perceived problems to effective operationApproach to solving perceived problems to effective operation
– Approach to exploiting the new capabilities of advanced technologies

• Semantics
– Named and manipulated entities– Named and manipulated entities
– Action categories

• Threads, processes, functions, operations, atomic
– ParallelismParallelism

• Forms, granularity, synchronization, ordering, eager/lazy evaluation
DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 14

Attributes of an Execution Model (2)
• Controlling physical resources

– Managing power
– Reconfiguring for graceful degradation
– Self-aware status monitoring and load balancing response

• PoliciesPolicies
– Invariants of operational properties specified
– Implementation methods to achieve properties unspecified

L fl ibilit– Leaves flexibility
• Adapting alternative technologies
• Distinctive balance points between hardware and software

Permits differentiation– Permits differentiation

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 15

Attributes of an Execution Model (3)
• Abstract to physical relationships

– Address translation
– Routing
– Protection
– Distribution versus locality management
– Dynamic adaptive migration
– Moving work to data, not just data to work

• Traversing continuationsTraversing continuations

• Determines commonality
– Portability

S– Stability across generations
– ISV application software product targets

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 16

Goals of a New Model of Parallel
Computation for Exascalep

• Serve as a discipline to govern future scalable system
architectures, programming methods, and runtime

• Latency hiding at all system distances
– Latency mitigating architectures

• Exploit parallelism in diversity of forms and granularity
• Provide a framework for efficient fine grain synchronization and

scheduling (dispatch)
• Enable optimized runtime adaptive resource management and

task scheduling for dynamic load balancingtask scheduling for dynamic load balancing
• Support full virtualization for fault tolerance and power

management, and continuous optimization
• Self aware infrastructure for power management• Self aware infrastructure for power management
• Semantics of failure response for graceful degradation
• Complexity of operation as an emergent behavior from simplicity

of design high replication and local adaptation for global optimaof design, high replication, and local adaptation for global optima
in time and space

Key Points
• HPC in Phase Change

– Technology pushes through punctuated equilibriumgy p g p q
• Role of new model of computation

– Paradigm shift, adjusts to new set of needs
• ParalleX as an example

– Includes some (not all) of the fundamental features needed
• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads
– Elimination of global barriers through lightweight

synchronization

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 18

ParalleX Model Components

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 19

Parcel Structure

Transport / network layer
protocol wrappers

destination payloadaction continuations CRC

p pp

h d ilheader trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize
the message footprint (e.g. destination address, checksum)

20LOUISIANA STATE UNIVERSITY

Parcel Interaction with the System

Parcels

AGAS

Locality 1 Threads

LCOs
Main

Locality 2

Locality 3

Threads

DCOs
AMOs

M t th d

Locality n

DCOs. . .

processes

Copy Semantics

Metathreads

LOUISIANA STATE UNIVERSITY 21

processes

Parcel Destination
• Application specific addressing:

– Global virtual address of target (recipient) objectg (p) j
– Current implementation: HPX GID (global ID), 128-bit

• System specific addressing:
– Physical address of a hardware resource
– Supports direct access to register space or state machine

i l timanipulation
– May be required for percolation

LOUISIANA STATE UNIVERSITY 22

Parcel Actions
• Data movement

– Block read and write
– Lightweight scalar load/store– Lightweight scalar load/store

• Synchronization
– Atomic Memory Operations

Basic LCOs– Basic LCOs
• Thread manipulation

– Thread instantiation
Th d i t– Thread register access

– Thread control and state management
• Direct hardware access

– Counters
– Physical memory
– State machines

LOUISIANA STATE UNIVERSITY 23

LCOs
• A number of forms of synchronization are incorporated into the

semantics
• Support message-driven remote thread instantiationpp g
• In-memory synchronization

– Control state is in the name space of the machine
– Producer-consumer in memory

Local m t al e cl sion protection– Local mutual exclusion protection
– Synchronization mechanisms as well as state are presumed to be intrinsic

to memory
• Basic synchronization objects:

– Mutexes
– Semaphores
– Events
– Full-Empty bits– Full-Empty bits
– Data flow
– Futures
– …

24

• User-defined (custom) LCOs

Multithreading

• Threads are collections of related operations that perform
on locally exchanged data values

• A thread is a continuation combined with a local
environment
– Modifies local named data state and temporariesModifies local named data state and temporaries
– Updates intra-thread and inter-thread control state

• Does not assume sequential execution
– Other flow control for intra-thread operations possible

• Thread can realize transaction phase
• Thread does not assume dedicated execution resources• Thread does not assume dedicated execution resources
• Thread is first class object identified in global name space
• Thread is ephemeral

25

p

Parcel Payload
• Lightweight

– Remote function arguments (includes LCO actions)g ()
– AMO operands
– Scalar load / store

• Heavyweight
– Action-dependent
– Migrating object state
– Page relocation

Some percolation instances– Some percolation instances

LOUISIANA STATE UNIVERSITY 26

Parcel Continuations
• Enables migration of flow control across global space
• Format: list of arbitrary LCOsFormat: list of arbitrary LCOs
• Accept result(s) returned by parcel-invoked action
• Continuation typesContinuation types

– Return the value to the requestor
– Standard LCO evaluation

• Spawn local computation
• Propagate the result to another locality via parcel

Perform a s stem call– Perform a system call

LOUISIANA STATE UNIVERSITY 27

Parcel Handler Implementation

Parcel
Class

Atomic
DMA Ops Memory

Class
Buffer

Data
Movement

Data block store

Data block request

Packet from

Movement
Control

Data block request

Atomic data operations &
L/S
B i LCO

Thread Create

Thread

Buffer NICBasic LCO

Thread & OS instantiation

Thread loadThread
Manager
Interface

Thread management

Hardware

Primitives
28

Key Points
• HPC in Phase Change

– Technology pushes through punctuated equilibriumgy p g p q
• Role of new model of computation

– Paradigm shift, adjusts to new set of needs
• ParalleX as an example

– Includes some (not all) of the fundamental features needed
• Early results from ACS encouraged ParalleX

project
– Dynamic scheduling of lightweight user threads
– Elimination of global barriers through lightweight

synchronizationsynchronization

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 29

Fibonacci Sequence

100

Runtimes for Different Implementations (4 cores)

10

1

un
ti
m
e
[s
]

HPX (1OS thread)

HPX (2OS threads)

0.01

0.1Ru Java

pthreads

0.001

0 5 10 15 20 25 30

fib()x: fib(x)

Using HPX for AMR

Out1,i, i-1 Out1,i, i Out1,i, i+1

Stage 1

F1, i F1, i+1F1, i‐1 ……

FF F

Stage 0

F0, iF0, i‐1 F0, i+1 ……

In0,i, i-1 In0,i, i In0,i, i+1

Using HPX for AMR

Meanwhile, back on Earth
MPI• MPI-n
– Better alternative?
– Opens up intra-process parallelismp p p p

• UPC, GASnet inside?
– Backwards compatible with > decade of legacy codes

• Megalopolis computing• Megalopolis computing
– Concurrent operation of multiple interoperating activities
– Disparate life cycles (sources, languages) for code modules

• ParalleX supercharging for Exascale in a future real-world
– Scaling through data-driven execution (?)

• Merges metadata and control flowMerges metadata and control flow
• Dynamic graph based problems

– Self-aware operation for dynamic scheduling & power management
– compute-validate-commit cycle for in situ micro-shedding faultcompute validate commit cycle for in situ micro shedding fault

tolerance
DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 33

